Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

نویسندگان

  • Charles C L McCrory
  • Suho Jung
  • Ivonne M Ferrer
  • Shawn M Chatman
  • Jonas C Peters
  • Thomas F Jaramillo
چکیده

Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the act...

متن کامل

Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.

Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanode...

متن کامل

Roles of cocatalysts in photocatalysis and photoelectrocatalysis.

Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...

متن کامل

Minimization of Ionic Transport Resistance in Porous Monoliths for Application in Integrated Solar Water Splitting Devices

Monolithic solar water splitting devices consist of photovoltaic materials integrated with electrocatalysts and produce solar hydrogen by water splitting upon solar illumination in one device. Upscaling of monolithic solar water splitting devices is obstructed by high ohmic losses in the electrolyte due to long ionic transport distances. A new design overcomes the problem by introducing micron ...

متن کامل

Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting.

Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 13  شماره 

صفحات  -

تاریخ انتشار 2015